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â-Amino acids have found extensive application in the life
sciences as components of biologically active peptides and small-
molecule pharmaceuticals.1 Synthetic derivatives of biologically
relevant peptides incorporatingâ-amino acids often display interest-
ing pharmacological activity, with increased potency and enzymatic
stability relative to their native counterparts, and have played im-
portant roles in advancing the understanding of enzyme mecha-
nisms, protein conformations, and properties related to molecular
recognition.2 In organic synthesis,â-amino acids are commonly
used as chiral building blocks,3 and a great deal of research has
focused on facile, practical, and scalable methods for their prepara-
tion.4,5

Given its inherent efficiency and atom economy,6 catalytic
asymmetric hydrogenation would seem to be an ideal approach to
preparing enantiopureâ-amino acids. Indeed, such methods are
among the most studied and widely applied for the enantioselective
preparation ofR-amino acids.7-9 Yet, despite significant advance-
ments in recent years,10 asymmetric hydrogenation has yet to find
application in the large-scale preparation of enantiopureâ-amino
acids.11 Their practical preparation still relies on the resolution of
racemates12 or the use of chiral auxiliaries.13

One significant drawback to current approaches to asymmetric
hydrogenation of unsaturatedâ-amino acids is the requirement of
an acyl protecting group on the nitrogen: this group is considered
indispensable to satisfy the chelation requirement between the
substrate and the metal, leading to high reactivity and selectivity.14,15

Direct acylation of enamines is not a trivial chemical transformation,
and there are no other efficient methods for enamide synthesis.16

In addition, removal of the acyl group often requires heating in
strongly acidic or basic conditions, which may be incompatible with
other functional groups in the molecule. The difficulty and redun-
dancy of introduction and removal of the acetamide group has
seriously limited the use of this otherwise powerful synthetic
method.

We report here the first general method of high-yielding, highly
enantioselective hydrogenations ofunprotectedâ-enamine esters
1 and amides3 (Scheme 1).17 This transformation obviates the need
for N-protecting group chemistry, directly yielding the desired
â-amino acid derivative. Theâ-enamino esters (1) and amides (3)
are easily prepared in high yield by reaction of NH4OAc with the
corresponding readily availableâ-keto esters and amides.18,19Both
are obtained exclusively as the (Z)-isomer via direct crystallization
from the reaction mixture.20

Exploratory catalyst screening employedâ-enamino ester1aand
a diverse array of commercially available catalysts and nonracemic
ligands. Representative results are summarized in Table 1.

Not surprisingly, a number of the metal-ligand complexes
screened gave poor results. The Rh-ferrocenophosphine (I )
complex, however, gave good conversion and enantiomeric excess.
Further examination of a number of other Josiphos-type ligands
with varying electronic and steric properties revealed that for ester
1a, ligand I gave the best results in terms of conversion and
enantioselectivity. With these encouraging results, we proceeded
to investigate the scope of this reaction on both enamine esters
and enamine amides.

As shown in Table 2, a wide variety of unprotected enamine
esters and amides all gave the correspondingâ-amino acid
derivatives in high yield with good to excellent enantioselectivity
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Scheme 1. Asymmetric Hydrogenation of Unprotected Enamines

Table 1. Asymmetric Hydrogenation of 1aa

entry ligand yieldb % eec % configuration

1 [((R,R)-DiPAMP)Rh(cod)]BF4 0.1
2 [((S,S)-Me-DuPHOS)Rh(cod)]BF4 71.4 9.3 S
3 (S)-BINAPHANE/[Rh(cod)]Cl]2 11.1 10.8 R
4 (S)-f-BINAPHANE/[Rh(cod)]Cl]2 77.3 9.8 S
5 (S)-C1-TUNEPHOS/[Rh(cod)]Cl]2 8.9 2.4 S
6 [((R,R)-Et-FerroTANE)Rh(cod)]BF4 77.0 88.0 R
7d (R)-(S)-I/ [Rh(cod)]Cl]2 93.7 96.1 S
8e (R)-(S)-I/ [Rh(cod)]Cl]2 trace
9 (R)-PHANEPHOS/[Rh(cod)]Cl]2 57.6 76.2 R

10 (+)-TMBTP/[Rh(cod)]Cl]2 15.0 78.4 S
11 ((S)-BINAP)RuCl2 0.9
12 (R)-(S)-I/ [Ir(cod)Cl]2 2.8
13 (R)-(S)-II/ [Ir(cod)Cl]2 11.2 84.7 S

a Reaction conditions: in 2,2,2-trifluoroethanol (TFE), S/C) 20, 1:1
ligand/metal, 90 psig H2, 50 °C, 18 h. For information on the ligands, see
Supporting Information.b Assayed by HPLC.c Assayed by chiral HPLC.
d With 1 mol % catalyst.e In MeOH.
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using only 0.3 mol % catalyst under relatively mild conditions (100
psig H2). Ligand I gave the best results in the hydrogenation of
enamine esters, while ligandII gave the highest rates and
enantioselectivities for the hydrogenation of enamine amides.
Interestingly, this catalytic system exhibited a high sensitivity to
solvent. For hydrogenation of enamine esters, TFE is preferred for
high reactivity and selectivity. In MeOH, however, the reaction
was almost totally inhibited (entry 2 in Table 2). On the other hand,
the hydrogenations of enamine amides gave much higher selectivity
in MeOH than in TFE (entry 8). It is believed that the solvent acidity
plays an important role in the reaction.21

The success of this hydrogenation method despite the lack of a
directingN-acyl group on the substrate begs the question of what
sort of mechanism is operative that gives high rates of reaction
and high enantiofacial selectivity in the Rh-H insertion step.
Mechanistic studies are ongoing and will be reported in due course.
However, preliminary results of deuterium labeling studies suggest
the intriguing possibility that the reaction proceeds through the imine
tautomer, making this reaction mechanistically analogous toâ-ke-
toester and -amide hydrogenations.8,22

In summary, we have discovered an unprecedented enantiose-
lective reduction of unprotected enamino esters and amides using
commercially available ligands under mild hydrogenation condi-
tions. This method gives high enantioselectivity, high reactivity,
and wide applicability and requires no protecting groups. Contrary
to accepted thinking, our results clearly show that theN-acyl group
is not a prerequisite for such transformations to be effected. It is

our hope that this discovery will provide a practical and efficient
method for the large-scale preparation ofâ-amino acids and their
derivatives.
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Table 2. Asymmetric Hydrogenation of Enamine Esters and
Amidesa

entry enamine ligand solvent
time

h
yield
%b

ee
% configuration

1 1a I TFE 6 97.6 96.1 S
2 1a I MeOH 18 trace
3 1b I TFE 11 87.5 95.0 S
4 1c I TFE 11 85.4c 96.1 (-)
5 1d I TFE 11 94.4 93.3 R
6 1e I TFE 24 90.5 95.7 (-)
7 3a II MeOH 8 74.6 95.6 (-)
8d 3a II TFE 18 94.1 82.2 (-)
9e 3b II MeOH 8 82.0 96.3 (+)

10 3c II MeOH 8 74.3 96.0 (+)
11 3d II MeOH 8 94.0 97.1 (-)

a Reaction conditions: 0.15 mol % [(COD)RhCl]2, 0.3 mol % ligand,
50 °C, 90-100 psig H2. b Assay yield.c Isolated yield.d With 1 mol %
catalyst.e With 0.7 mol % catalyst.
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